નીચેનામાંથી ક્યુ વિધાન સાચુ છે?

  • A

    જો ગણ $A$ એ સાન્ત ગણ હોય કે જેથી $f : A \to A$ એ એક-એક વિધેય થાય તો $f$ વ્યાપત પણ થાય.

  • B

    જો વિધેય તેના પ્રદેશગણમા સતત હોય અને $x$ કોઇ પણ $2$ કિમતો ના ચિહ્નો બદલવામા આવે તો અયુગ્મ બીજો ની કિમત આપેલ $x$ ની વચ્ચે મળે.

  • C

    જો $f : A \to A$ એ એક-એક વિધેય હોય તો વ્યાપત પણ થાય

  • D

    વક્રના કોઇ પણ બિંદુ પાસે સ્થાનીય મહત્તમ અને વૈશ્વિક ન્યુનતમ કિમત મળી શકે છે.

Similar Questions

જો $E = \{ 1,2,3,4\} $ અને $F = \{ 1,2\} $.તો $E$ થી $F$ પરના વ્યાપ્ત વિધેય ની સંખ્યા મેળવો.

  • [IIT 2001]

ધારો કે $f:(1,3) \rightarrow \mathrm{R}$ એ $f(\mathrm{x})=\frac{\mathrm{x}[\mathrm{x}]}{1+\mathrm{x}^{2}},$ મુજબ વિધેય વ્યાખ્યાતિ છે કે જ્યાં $[\mathrm{x}]$ એ મહતમ પૃણાંક વિધેય છે તો વિધેય $f$ નો વિસ્તાર મેળવો.

  • [JEE MAIN 2020]

$f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$ દ્વારા વ્યાખ્યાયિત વિધેય $f:\left[\frac{1}{2}, 1\right] \rightarrow \mathbb{R}$ ધ્યાને લો. નીચેના વિધાનો ધ્યાને લો

$(I)$ $y=f(x)$ એ $x$-અક્ષને બરાબર એક બિંદુએ છેદ છે.

$(II)$  $y=f(x)$ એ $x$-અક્ષને $x=\cos \frac{\pi}{12}$ આગળ છેદ છે. તો.......

  • [JEE MAIN 2024]

વિધેય $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ નો પ્રદેશ મેળવો. ( કે જ્યાં $[.]$ એ મહતમ પૂર્ણાંક વિધેય છે .)

અહી $f(x)=\left\{\begin{array}{l} x \sin \left(\frac{1}{x}\right) \text { when } x \neq 0 \\ 1 \text { when } x=0 \end{array}\right\}$ અને $A=\{x \in R: f(x)=1\} $ હોય તો $A$ માં  ..  . .  . 

  • [KVPY 2019]